SpatialPOP: package for generation of spatial data along with spatial coordinates and spatially varying model parameters

Introduction

****
In this R package, a spatial dataset can be generated under the assumption that observations are collected from a two dimensional uniform grid consists of (m2) lattice points having unit distance between any two neighbouring points along the horizontal and vertical directions.

****

Generation of simulated dataset based on spatially varying regression model

****

generation of spatial coordinates of locations

The size of the population is N= m2. The spatial coordinates of the locations of observations can be computed by the following expressions

( Latitudei, Longitudei )= ( mod(i-1,m), [(i-1)/m] ), i= 1,…, m2

where, mod(i-1,m) is the remainder of (i-1) divided by m and [(i-1)/m] is the integer part of the number (i-1)/m

generation of auxiliary variable from uniform distribution

X =runif(N,0,1)

error term drawn independently from normal distribution i.e. N(0,1)

e =rnorm(N, mean=0, sd=1)

generation of spatially varying regression coefficients

B0=(Latitudei+Longitudei)/6

B1=(Latitudei/3)

spatially varying regression model for generating the response variable

Yi = B0( Latitudei,Longitudei ) + B1( Latitudei,Longitudei )*Xi + ei ; i= 1,…, N

# Examples: generate an uniform two dimensional grid of lattice points 

library(SpatialPOP)
coord_grid=spatial_grid(c(1:5),c(1:5))
coord_grid=as.data.frame(coord_grid)
names(coord_grid)=cbind("x","y")
coord_grid
##    x y
## 1  1 1
## 2  2 1
## 3  3 1
## 4  4 1
## 5  5 1
## 6  1 2
## 7  2 2
## 8  3 2
## 9  4 2
## 10 5 2
## 11 1 3
## 12 2 3
## 13 3 3
## 14 4 3
## 15 5 3
## 16 1 4
## 17 2 4
## 18 3 4
## 19 4 4
## 20 5 4
## 21 1 5
## 22 2 5
## 23 3 5
## 24 4 5
## 25 5 5
plot(coord_grid)

# Examples: simulated data along with spatial coordinates and spatially varying model parameters

library(SpatialPOP)

coord_grid=spatial_grid(c(1:5),c(1:5))
coord_grid=as.data.frame(coord_grid)
names(coord_grid)=cbind("x","y")
coord_grid
##    x y
## 1  1 1
## 2  2 1
## 3  3 1
## 4  4 1
## 5  5 1
## 6  1 2
## 7  2 2
## 8  3 2
## 9  4 2
## 10 5 2
## 11 1 3
## 12 2 3
## 13 3 3
## 14 4 3
## 15 5 3
## 16 1 4
## 17 2 4
## 18 3 4
## 19 4 4
## 20 5 4
## 21 1 5
## 22 2 5
## 23 3 5
## 24 4 5
## 25 5 5
N<-nrow(coord_grid)
N
## [1] 25
m<-sqrt(nrow(coord_grid))
m
## [1] 5
spatial_data<-spatialPOP(25,5,c(1:5),c(1:5))
spatial_data
##               Y          X latitude longitude        B0        B1
## 1  -0.891472527 0.00823234        0         0 0.0000000 0.0000000
## 2   0.391774436 0.23253285        1         0 0.1666667 0.3333333
## 3   0.754636299 0.90342016        2         0 0.3333333 0.6666667
## 4   0.689986013 0.76365119        3         0 0.5000000 1.0000000
## 5  -0.118914927 0.54021183        4         0 0.6666667 1.3333333
## 6   0.006648299 0.85244763        0         1 0.1666667 0.0000000
## 7   0.926334035 0.81978337        1         1 0.3333333 0.3333333
## 8   0.877404503 0.23481600        2         1 0.5000000 0.6666667
## 9  -0.693881009 0.13510860        3         1 0.6666667 1.0000000
## 10  1.725796288 0.49814040        4         1 0.8333333 1.3333333
## 11  1.432545907 0.03277423        0         2 0.3333333 0.0000000
## 12 -1.201911386 0.07815857        1         2 0.5000000 0.3333333
## 13 -0.015836874 0.13549746        2         2 0.6666667 0.6666667
## 14  0.504845273 0.22494198        3         2 0.8333333 1.0000000
## 15  0.175966337 0.19198541        4         2 1.0000000 1.3333333
## 16  2.315683176 0.24268247        0         3 0.5000000 0.0000000
## 17  0.745685334 0.29228764        1         3 0.6666667 0.3333333
## 18  1.899054254 0.28551411        2         3 0.8333333 0.6666667
## 19  2.430815410 0.41682216        3         3 1.0000000 1.0000000
## 20  0.809411423 0.12245057        4         3 1.1666667 1.3333333
## 21  1.052437545 0.56574315        0         4 0.6666667 0.0000000
## 22 -0.052318995 0.93222596        1         4 0.8333333 0.3333333
## 23  0.567859424 0.36221107        2         4 1.0000000 0.6666667
## 24  1.839038191 0.79747388        3         4 1.1666667 1.0000000
## 25  1.320047639 0.02240958        4         4 1.3333333 1.3333333